Перемножение эпюр по правилу, методу или способу Мора-Верещагина: формула, таблица, примеры и задачи
Привет! В этой статье будем учиться определять перемещения поперечных сечений при изгибе: прогибы и углы поворотов, по методу (способу, правилу) Верещагина. Причем, это правило широко используется не только при определении перемещений, но и при раскрытии статической неопределимости систем по методу сил. Я расскажу, о сути этого метода, как перемножаются эпюры различной сложности и когда выгодно пользоваться этим методом.
Верещагин и его метод, правило или способ
А.К. Верещагин в 1925г. предложил более простой способ решения (формулы) интеграла Мора. Он предложил вместо интегрирования двух функций перемножать эпюры: умножать площадь одной эпюры на ординату второй эпюры под центром тяжести первой. Этим способом можно пользоваться, когда одна из эпюр прямолинейна, вторая может быть любой. Кроме того, ордината берется прямолинейной эпюры. Когда эпюры обе прямолинейны, то тут совсем не важно, чью брать площадь, а чью ординату. Таким образом, эпюры по Верещагину перемножаются по следующей формуле:
Проиллюстрировано перемножение эпюр по Верещагину: C — центр тяжести первой эпюры, ωс — площадь первой эпюры, Mc — ордината второй эпюры под центром тяжести первой.
Площадь и центр тяжести эпюр
При использовании метода Верещагина, берется не сразу вся площадь эпюры, а частями, в пределах участков. Эпюра изгибающих моментов расслаивается на простейшие фигуры.
Любую эпюру можно расслоить всего на три фигуры: прямоугольник, прямоугольный треугольник и параболический сегмент.
Поэтому именно с этими фигурами будем дальше работать. Напомню, как вычислить их площадь и где у них находится центр тяжести. Все формулы и размеры оформил в виде таблицы:
Перемножение эпюр по Верещагину
В этом блоке статьи покажу частные случаи перемножения эпюр по Верещагину.
Прямоугольник на прямоугольник
Прямоугольник на треугольник
Треугольник на прямоугольник
Сегмент на прямоугольник
Сегмент на треугольник
Частные случаи расслоения эпюр на простые фигуры
В этом блоке статьи покажу частные случаи расслоения эпюр на простые фигуры, для возможности их перемножения по Верещагину.
Прямоугольник и треугольник
Два треугольника
Два треугольника и сегмент
Треугольник, прямоугольник и сегмент
Пример определения перемещений: прогибов и углов поворотов по Верещагину
Теперь предлагаю рассмотреть конкретный пример с расчетом перемещений поперечных сечений: их прогибов и углов поворотов. Возьмем стальную балку, которая загружена всевозможными типами нагрузок и определим прогиб сечения C, а также угол поворота сечения A.
Построение эпюры изгибающих моментов
В первую очередь, рассчитываем и строим эпюру изгибающих моментов:
Построение единичных эпюр моментов
Теперь для каждого искомого перемещений необходимо приложить единичную нагрузку (безразмерную величину равную единице) и построить единичные эпюры:
- Для прогибов, прикладываются единичные силы.
- Для углов поворотов, прикладываются единичные моменты.
Например, после расчета величина прогиба получилась положительной, это значит, что направление перемещения сечения совпадает с направлением ранее прикладываемой силы. Тоже самое касается и углов поворотов.
Перемножение участков эпюры по Верещагину
После проведения всех подготовительных работ: построения эпюры изгибающих моментов, расслоения ее на элементарные фигуры и построения единичных эпюр от нагрузок, приложенных в местах и направлении искомых перемещений, можно переходить непосредственно к перемножению соответствующих эпюр.
Определение прогиба сечения С
Перемножаем соответствующие эпюры слева направо и вычисляем прогиб сечения C по методу Мора — Верещагина:
[ < V >_< C >=frac < 1 >< E< I >_ < x >> (frac < 1 > < 2 >cdot 6cdot 3cdot frac < 2 > < 3 >cdot 2+frac < 1 > < 2 >cdot 6cdot 2cdot frac < 2 > < 3 >cdot 2)=frac < 20кН< м >^ < 3 >>< E< I >_ < x >> ]
Представим, что рассчитываемая балки имеет поперечное сечение в виде двутавра №24 по ГОСТ 8239-89, тогда прогиб балки будет равен:
Определение угла поворота сечения С
Перемножаем соответствующие эпюры слева направо и вычисляем угол поворота сечения C по правилу Мора — Верещагина:
Источник
Реферат: Определение перемещения методом Мора. Правило Верещагина
Название: Определение перемещения методом Мора. Правило Верещагина Раздел: Промышленность, производство Тип: реферат Добавлен 03:17:25 01 ноября 2008 Похожие работы Просмотров: 3311 Комментариев: 14 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно Скачать | ||||
Вид эпюры | Площадь эпюры | Расстояние до центра тяжести | ||
Эпюра от действия единичной силы в точке А представлена на рис. 7.15, г.
Для определения вертикального перемещения в точке А необходимо перемножить эпюру от нагрузки на эпюру от единичной силы. Однако замечаем, что на участке ВС суммарной эпюры криволинейная эпюра получена не только от действия равномерно распределенной нагрузки, но также и от действия сосредоточенной силы Р. В результате на участке ВС уже будет не элементарная параболическая эпюра, приведенная в таблицах 7.1 и 7.2, а по существу сложная эпюра, для которой данные этих таблиц недействительны.
Поэтому необходимо произвести расслоение сложной эпюры по рис. 7.15, а на элементарные эпюры, представленные на рис. 7.15, б и 7.15, в.
Эпюра по рис. 7.15, б получена только от сосредоточенной силы, эпюра по рис. 7.15, в — только от действия равномерно распределенной нагрузки.
Теперь можно перемножить эпюры, используя табл. 1 или 2.
Для этого необходимо перемножить треугольную эпюру по рис. 7.15, б на треугольную эпюру по рис. 7.15, г и добавить к этому результат перемножения параболической эпюры на рис. 7.15, в на трапециевидную эпюру участка ВС по рис. 7.15, г, так как на участке АВ ординаты эпюры по рис. 7.15, в равны нулю.
Покажем теперь второй способ перемножения эпюр. Рассмотрим снова эпюру по рис. 7.15, а. Примем начало отсчета в сечении В. Покажем, что в пределах кривой LMNизгибающие моменты могут быть получены как алгебраическая сумма изгибающих моментов, соответствующих прямой LN, и изгибающих моментов параболической эпюры LNML, такой же, как и для простой балки длиной а, загруженной равномерно распределенной нагрузкой q:
Наибольшая ордината посредине будет равна .
Для доказательства напишем фактическое выражение изгибающего момента в сечении на расстоянии zот точки В
(А)
Напишем теперь выражение изгибающего момента в том же сечении, полученное как алгебраическая сумма ординат прямой LNи параболы LNML.
Уравнение прямой LN
где k— тангенс угла наклона этой прямой
Следовательно, уравнение изгибающих моментов, полученное как алгебраическая сумма уравнения прямой LNи параболы LNMNимеет вид
что совпадает с выражением (А).
При перемножении эпюр по правилу Верещагина следует перемножить трапецию BLNCна трапецию из единичной эпюры на участке ВС (см. рис. 7.15, г) и вычесть результат перемножения параболической эпюры LNML(площадью ) на ту же трапецию из единичной эпюры. Такой способ расслоения эпюр особенно выгоден, когда криволинейный участок эпюры находится на одном из средних участков балки.
Пример 7.7. Определить вертикальное и угловое перемещения консольной балки в месте приложения нагрузки (рис. 7.16).
Решение. Строим эпюру изгибающих моментов для грузового состояния (рис. 7.16, а).
Для определения вертикального перемещения выбираем вспомогательное состояние балки с единичной силой в точке приложения нагрузки.
Строим эпюру изгибающих моментов от этой силы (рис. 7.16, б). Определяем вертикальное перемещение по способу Мора
Значение изгибающего момента от нагрузки
Значение изгибающего момента от единичной силы
Подставляем эти значения МР и Miпод знак интеграла и интегрируем
Этот же результат был ранее получен другим способом.
Положительное значение прогиба показывает, что точка приложения нагрузки Р перемещается вниз (в направлении единичной силы). Если бы мы единичную силу направили снизу вверх, то имели бы Mi = 1zи в результате интегрирования получили бы прогиб со знаком минус. Знак минус показывал бы, что перемещение происходит не вверх, а вниз, как это и есть в действительности.
Вычислим теперь интеграл Мора путем перемножения эпюр по правилу Верещагина.
Так как обе эпюры прямолинейны, то безразлично, из какой эпюры брать площадь и из какой — ординату.
Площадьгрузовой эпюры равна
Центр тяжести этой эпюры расположен на расстоянии 1/3l от заделки. Определяем ординату эпюры моментов от единичной силы, расположенную под
центром тяжести грузовой эпюры. Легко убедиться, что она равна 1/3l.
Тот же результат получается и по таблице интегралов. Результат перемножения эпюр положителен, так как обе эпюры располагаются снизу стержня. Следовательно, точка приложения нагрузки смещается вниз, т. е. по принятому направлению единичной силы.
Для определения углового перемещения (угла поворота) выбираем вспомогательное состояние балки, в котором на конце балки действует сосредоточенный момент, равный единице.
Строим эпюру изгибающих моментов для этого случая (рис. 7.16, в). Определяем угловое перемещение, перемножая эпюры. Площадь грузовой эпюры
Ординаты эпюры от единичного момента везде равны единице., Следовательно, искомый угол поворота сечения равен
Так как обе эпюры расположены снизу, то результат перемножения эпюр положителен. Таким образом, концевое сечение балки поворачивается по часовой стрелке (по направлению единичного момента).
Пример: Определить по способу Мора — Верещагина прогиб в точке Dдля балки, изображенной на рис. 7.17..
Решение. Строим расслоенную эпюру моментов от нагрузки, т. е. строим отдельные эпюры от действия каждой нагрузки. При этом для удобства перемножения эпюр целесообразно строить расслоенные (элементарные) эпюры относительно сечения, прогиб которого определяется в данном случае относительно сечения D.
На рис. 7.17, а представлена эпюра изгибающих моментов от реакции А (участок AD) и от нагрузки Р = 4 Т (участок DC). Эпюры строятся на сжатом волокне.
На рис. 7.17, б представлены эпюры моментов от реакции В (участок BD), от левой равномерно распределенной нагрузки (участок AD) и от равномерно распределенной нагрузки, действующей на участке ВС. Эта эпюра изображена на рис. 7.17, б на участке DCснизу.
Далее выбираем вспомогательное состояние балки, для чего в точке D, где определяется прогиб, прикладываем единичную силу (рис. 7.17, в). Эпюра моментов от единичной силы изображена на рис. 7.17, г.Теперь перемножим эпюры с 1 по 7 на эпюры 8 и 9, пользуясь таблицами перемножения эпюр, с учетом знаков.
При этом эпюры, расположенные с одной стороны балки, перемножаются со знаком плюс, а эпюры, расположенные по разные стороны балки, перемножаются со знаком минус.
При перемножении эпюры 1 и эпюры 8 получим
Перемножая эпюру 5 на эпюру 8, получим
Перемножение эпюр 2 и 9 дает
Перемножаем эпюры 4 и 9
Перемножаемэпюры 6 и 9
Суммируя результаты перемножения эпюр, получим
Знак минус показывает, что точка Dперемещается не вниз, как направлена единичная сила, а вверх.
Этот же результат был получен ранее по универсальному уравнению .
Конечно, в данном примере можно было расслоить эпюру только на участке AD, так как на участке DBсуммарная эпюра прямолинейная и ее незачем расслаивать. На участке ВС расслоения не требуется, так как от единичной силы на этом участке эпюра равна нулю. Расслоение эпюры на участке ВС необходимо для определения прогиба в точке С.
Пример. Определить вертикальное, горизонтальное и угловое перемещения сечения А ломаного стержня, представленного на рис. 7.18, а. Жесткость сечения вертикального участка стержня — EJ1 жесткость сечения горизонтального участка — EJ2.
Решение. Строим эпюру изгибающих моментов от нагрузки. Она представлена на рис. 7.18, б (см. пример 6.9). Для определения вертикального перемещения сечения А выбираем вспомогательное состояние системы, представленное на рис. 7.18, в. В точке А приложена единичная вертикальная сила, направленная вниз.
Эпюра изгибающих моментов для этого состояния представлена на рис. 7.18, в.
Определяем вертикальное перемещение по методу Мора, используя способ перемножения эпюр. Так как на вертикальном стержне во вспомогательном состоянии эпюра М1 отсутствует, то перемножаем только эпюры, относящиеся к горизонтальному стержню. Площадь эпюры берем из грузового состояния, а ординату — из вспомогательного. Вертикальное перемещение равно
Так как обе эпюры расположены снизу, то результат перемножения берем со знаком плюс. Следовательно, точка А перемещается вниз, т. е. так, как направлена единичная вертикальная сила.
Для определения горизонтального перемещения точки А выбираем вспомогательное состояние с горизонтальной единичной силой, направленной влево (рис. 7.18, г). Эпюра моментов для этого случая представлена там же.
Перемножаем эпюры МPи М2 и получаем
Результат перемножения эпюр положителен, так как перемножаемые эпюры располагаются на одной и той же стороне стержней.
Для определения углового перемещения выбираем вспомогательное состояние системы по рис. 7.18,5 и строим эпюру изгибающих моментов для этого состояния (на том же рисунке). Перемножаем эпюры МР и М3:
Результат перемножения положителен, так как перемножаемые эпюры располагаются с одной стороны.
Следовательно, сечение Aповорачивается по часовой стрелке
Вид деформированного стержня показан на рис. 7.18, е, при этом перемещения сильно увеличены.
Феодосьев В.И. Сопротивление материалов. 1986
Беляев Н.М. Сопротивление материалов. 1976
Красковский Е.Я., Дружинин Ю.А., Филатова Е.М. Расчет и конструирование механизмов приборов и вычислительных систем. 1991
Работнов Ю.Н. Механика деформируемого твердого тела. 1988
Источник