Россия, Красноярский край, Дивногорск, улица Залив Шумиха, 39
Телефон:
+7 (391) 215-10-00
Круглосуточноадминистрация: пн-вс 10:00-18:00
whatsapp telegram vk email

Формула мора способ верещагина

Формула мора способ верещагина

В общем случае (стержень переменного сечения, сложная система нагрузок) интеграл Мора определяется путем численного интегрирования. Во многих практически важных случаях, когда жесткость сечения постоянна по длине стержня, интеграл Мора может быть вычислен по правилу Верещагина. Рассмотрим определение интеграла Мора на участке от а до 6 (рис. 9.18).

Рис. 9.18. Правило Верещагина для вычисления интеграла Мора

Эпюры момента от единичного силового фактора состоят из отрезков прямых. Не нарушая общности, предположим, что в пределах участка

где А и В — параметры прямой:

Интеграл Мора на рассматриваемом участке постоянного сечения имеет вид

где F — площадь под кривой (площадь эпюры изгибающих моментов от внешних сил на участке z).

Далее следует учесть, что статический момент площади эпюры моментов равен

где — абсцисса центра тяжести площади .

Равенство (109) справедливо, когда в пределах участка не изменяет знак и может рассматриваться как элемент площади эпюры. Теперь из соотношений (107) —(109) получаем

— момент от единичной нагрузки в сечении

Вспомогательная таблица для использования правила Верещагина дана на рис. 9.19.

Замечания. 1. Если эпюра от действия внешних сил на участке линейна (например, при действии сосредоточенных сил и моментов), то правило можно применять в обращенном виде: площадь эпюры от единичного силового фактора умножить на ординату эпюры соответствующую центру тяжести площади . Это вытекает из приведенного доказательства.

2. Правило Верещагина может быть распространено на интеграл Мора в общем виде (уравнение (103)).

Рис. 9.19. Площади и положение центров тяжести эпюр моментов

Рис. 9.20. Примеры определения прогиба и углов поворота по правилу Верещагина

Основное требование при этом состоит в следующем: в пределах участка внутренние силовые факторы от единичной нагрузки должны быть линейными функциями вдоль оси стержня (линейность эпюр!).

Примеры. 1. Определить прогиб в точке А консольного стержня при действии сосредоточенного момента М (рис. 9.20, а).

Прогиб в точке А определяем по формуле (для краткости индекс опускается)

Знак минус связан с тем, что имеют разные знаки.

2. Определить прогиб в точке А в консольном стержне под действием распределенной нагрузки.

Прогиб определяем по формуле

Эпюры изгибающего момента М и перерезывающей силы Q от внешней нагрузки показаны на рис. 9.20, б, ниже на этом рисунке приведены эпюры при действии единичной силы. Далее находим

3. Определить прогиб в точке А и угол поворота в точке В для двухопорной балки, загруженной сосредоточенным моментом (рис. 9.20.).

Прогиб определяем по формуле (деформацией сдвига пренебрегаем)

Так как эпюра момента от единичной силы не изображается одной линией; то интеграл разбиваем на два участка:

Угол поворота в точке В равен

Замечание. Из приведенных примеров видно, что способ Верещагина в простых случаях позволяет быстро определить прогибы и углы поворота. Важно только применять единое правило знаков для Если условиться при изгибе стержня строить эпюры изгибающих моментов на «растянутом волокне» (см. рис. 9.20), то сразу легко видеть положительные и отрицательные значения моментов.

Особое преимущество правила Верещагина состоит в том, что оно может быть исполъвовано не только для стержней, но и для рам (разд. 17).

Ограничения для применения правила Верещагина.

Эти ограничения вытекают из вывода формулы (110), но обратим на них внимание еще раз.

1. Эпюра изгибающего момента от единичной нагрузки должна быть в виде одной прямой линии. На рис. 9.21, а показан случай, когда это условие не соблюдается. Интеграл Мора необходимо вычислять отдельно для участков I и II.

2. Изгибающий момент от внешней нагрузки в пределах участка должен иметь один знак. На рис. 9.21, б показан случай, когда правило Верещагина следует применять для каждого участка в отдельности. Это ограничение не относится к моменту от единичной нагрузки.

Рис. 9.21. Ограничения при использовании правила Верещагина: а — эпюра шсеет излом; б — эпюра имеет разные знаки; в — стержень имеет разные сечения

3. Жесткость стержня в пределах участка должна быть постоянна, иначе интегрирование следует распространять отдельно на участки с постоянной жесткостью. Ограничения по постоянной жесткости можно избежать, если строить эпюры .

Источник

Перемножение эпюр по правилу, методу или способу Мора-Верещагина: формула, таблица, примеры и задачи

Привет! В этой статье будем учиться определять перемещения поперечных сечений при изгибе: прогибы и углы поворотов, по методу (способу, правилу) Верещагина. Причем, это правило широко используется не только при определении перемещений, но и при раскрытии статической неопределимости систем по методу сил. Я расскажу, о сути этого метода, как перемножаются эпюры различной сложности и когда выгодно пользоваться этим методом.

Верещагин и его метод, правило или способ

А.К. Верещагин в 1925г. предложил более простой способ решения (формулы) интеграла Мора. Он предложил вместо интегрирования двух функций перемножать эпюры: умножать площадь одной эпюры на ординату второй эпюры под центром тяжести первой. Этим способом можно пользоваться, когда одна из эпюр прямолинейна, вторая может быть любой. Кроме того, ордината берется прямолинейной эпюры. Когда эпюры обе прямолинейны, то тут совсем не важно, чью брать площадь, а чью ординату. Таким образом, эпюры по Верещагину перемножаются по следующей формуле:​

image

Проиллюстрировано перемножение эпюр по Верещагину: C — центр тяжести первой эпюры, ωс — площадь первой эпюры, Mc — ордината второй эпюры под центром тяжести первой.

Площадь и центр тяжести эпюр

При использовании метода Верещагина, берется не сразу вся площадь эпюры, а частями, в пределах участков. Эпюра изгибающих моментов расслаивается на простейшие фигуры.

Любую эпюру можно расслоить всего на три фигуры: прямоугольник, прямоугольный треугольник и параболический сегмент.

Поэтому именно с этими фигурами будем дальше работать. Напомню, как вычислить их площадь и где у них находится центр тяжести. Все формулы и размеры оформил в виде таблицы:

image

Перемножение эпюр по Верещагину

В этом блоке статьи покажу частные случаи перемножения эпюр по Верещагину.

Прямоугольник на прямоугольник

image

Прямоугольник на треугольник

image

Треугольник на прямоугольник

image

Сегмент на прямоугольник

Сегмент на треугольник

Частные случаи расслоения эпюр на простые фигуры

В этом блоке статьи покажу частные случаи расслоения эпюр на простые фигуры, для возможности их перемножения по Верещагину.

Прямоугольник и треугольник

Два треугольника

Два треугольника и сегмент

Треугольник, прямоугольник и сегмент

Пример определения перемещений: прогибов и углов поворотов по Верещагину

Теперь предлагаю рассмотреть конкретный пример с расчетом перемещений поперечных сечений: их прогибов и углов поворотов. Возьмем стальную балку, которая загружена всевозможными типами нагрузок и определим прогиб сечения C, а также угол поворота сечения A.

Построение эпюры изгибающих моментов

В первую очередь, рассчитываем и строим эпюру изгибающих моментов:

Построение единичных эпюр моментов

Теперь для каждого искомого перемещений необходимо приложить единичную нагрузку (безразмерную величину равную единице) и построить единичные эпюры:

  • Для прогибов, прикладываются единичные силы.
  • Для углов поворотов, прикладываются единичные моменты.

Например, после расчета величина прогиба получилась положительной, это значит, что направление перемещения сечения совпадает с направлением ранее прикладываемой силы. Тоже самое касается и углов поворотов.

Перемножение участков эпюры по Верещагину

После проведения всех подготовительных работ: построения эпюры изгибающих моментов, расслоения ее на элементарные фигуры и построения единичных эпюр от нагрузок, приложенных в местах и направлении искомых перемещений, можно переходить непосредственно к перемножению соответствующих эпюр.

Определение прогиба сечения С

Перемножаем соответствующие эпюры слева направо и вычисляем прогиб сечения C по методу Мора — Верещагина:

[ < V >_< C >=frac < 1 >< E< I >_ < x >> (frac < 1 > < 2 >cdot 6cdot 3cdot frac < 2 > < 3 >cdot 2+frac < 1 > < 2 >cdot 6cdot 2cdot frac < 2 > < 3 >cdot 2)=frac < 20кН< м >^ < 3 >>< E< I >_ < x >> ]

Представим, что рассчитываемая балки имеет поперечное сечение в виде двутавра №24 по ГОСТ 8239-89, тогда прогиб балки будет равен:

Определение угла поворота сечения С

Перемножаем соответствующие эпюры слева направо и вычисляем угол поворота сечения C по правилу Мора — Верещагина:

Источник

Ссылка на основную публикацию
Похожее